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Progress in HIV vaccine development 
Margaret I Johnston* and Jorge Flores† 

Recent advances in HIV vaccine development include initiation 
of the first efficacy trials and substantial expansion of the 
preclinical pipeline. Several preclinical candidate vaccines 
have induced strong cellular immune responses and provided 
impressive protection against AIDS in non-human primate 
models; however, candidates that induce broadly neutralizing 
antibodies remain elusive. 
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Abbreviations

CTL cytotoxic T lymphocyte

HIV human immunodeficiency virus

MHC major histocompatibility complex

SIV simian immunodeficiency virus

TCLA tissue-culture laboratory-adapted


Introduction 
A safe and effective vaccine is the best hope for stopping 
the spread of HIV worldwide. As the 20th anniversary of 
the discovery of HIV approaches, considerable optimism is 
building that identification of an HIV vaccine is within 
reach. Advances in vaccine design, animal models and clini­
cal research have recently converged to create a promising 
pipeline of candidate vaccines. However, overcoming 
remaining scientific, logistical and financial challenges 
will require the talents and resources of all stakeholders — 
academic researchers, pharmaceutical companies, philan­
thropic organizations, governments and communities. This 

Table 1 

review outlines the major scientific advances of the past 
two years and highlights important challenges in converting 
the current optimism into success. 

Clinical trial results 
The HIV envelope is the predominant target of neutraliz­
ing antibodies in HIV-infected individuals. Several 
adjuvanted recombinant monovalent HIV envelope pro­
teins (e.g. gp160 or the mature exterior portion gp120), 
based on tissue-culture laboratory-adapted (TCLA) 
isolates of subtype B HIV, have been extensively studied 
in human trials. These candidates induced neutralizing 
antibodies in virtually all volunteers tested, but these 
antibodies exhibited little cross-reactivity against primary 
isolates of HIV [1]. Subsequently, bivalent candidates 
developed by VaxGen Inc. (AIDSVAX, Brisbane, CA) 
have advanced to efficacy trials in the USA and Thailand 
(Table 1). The bivalent vaccine comprises two gp120s, one 
from a subtype B TCLA isolate of HIV and one from a 
subtype B or E primary isolate, and trial results are expected 
around the end of 2002. 

Until recently, the frequency and strength of neutraliz­
ing antibodies and cytotoxic T lymphocytes (CTLs) 
induced by peptides based on the viral envelope or 
internal proteins have been disappointing. Peptide 
lipid-ation has shown some promise in improving 
immunogenicity — lipopeptides derived from env, gag 
and nef proteins induced CTLs to one or more peptides 
in up to two thirds of immunized volunteers [2]. Use of 
novel adjuvants, cytokines and co-stimulatory molecules 
are also under investigation. For example, a saponin 
adjuvant (QS21), although not well tolerated, decreased 
the dose of gp120 required to induce high-titer antibod­
ies [3•]. Peptides based on predictions of epitopes 
representing immunodominant, conserved, ‘supertype’ 

HIV vaccine candidates in clinical trial. 

Vaccine HIV subtype Producer Current status 

gp120 B/B, B/E VaxGen Phase III trials ongoing in the US and Thailand 
ALVAC-HIV B, E Aventis Pasteur In phase II trials in the US, Haiti, Brazil and Trinidad 

(subtype B), and Thailand (subtype E); tested 
alone or in combination with gp120 

ALVAC-HIV A Aventis Pasteur Ready for phase I trial in Uganda 
Lipopeptides LP5, LP6 B ANRS In phase I trials in France 
Vaccinia TBC-3B B Therion In phase I trials in the USA 
DNA-HIV B Apollon Phase I trials completed 
DNA-HIV, MVA-HIV A University of Oxford In phase I trials in the UK and Kenya 
NYVAC-HIV B Aventis Pasteur Ready for phase I trial in the USA 
DNA-HIV, Adenovirus-HIV B Merck In phase I trials in the USA 

ALVAC-HIV, recombinant canarypox expressing multiple HIV genes; multiple HIV genes; NYVAC-HIV, an attenuated vaccinia vector 
ANRS, National Agency for AIDS Research, France; MVA-HIV, expressing multiple HIV genes; TBC-3B, attenuated vaccinia vector 
modified vaccinia Ankara, an attenuated vaccinia vector, expressing expressing multiple HIV genes. 
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Table 2 

Candidate vaccines in preclinical development. 

Vaccine* HIV subtype Preclinical partners(s)† 

Adeno-associated virus expressing multiple genes C Targeted Genetics, Ohio State University, IAVI 
Adenovirus expressing multiple genes (replicating) B NCI 
ALVAC expressing multiple genes A Aventis Pasteur, WRAIR 
DNA and adenovirus (replicon) expressing multiple genes B Merck 
DNA and adenovirus expressing novel gag-pol and novel env B NIAID Vaccine Research Center 
DNA and MVA expressing multiple genes B, A/G Emory University, NIAID,CDC 
MVA expressing multiple genes A, D WRAIR 
DNA, Sindbis replicons expressing multiple genes, novel B, C Chiron, NIAID 

recombinant envelope proteins 
DNA expressing multiple HIV genes, DNA expressing cytokine B Wyeth-Lederle, NIAID 

gene and peptide boost 
DNA and fowlpox expressing multiple HIV genes and cytokine B, E University of New South Wales, NIAID 
DNA-env and envelope protein Multiple ABL, NIAID 
Gp120 and regulatory proteins in novel adjuvants B GlaxoSmithKline 
MVA expressing multiple genes, including CCR5-using envelope B Therion, University of Massachusetts, NIAID 
MVA, NYVAC, DNA, Semliki Forest Virus expressing multiple C Eurovac, Aventis Pasteur 

genes and envelope protein 
P55 VLP B Protein Sciences, NIAID 
Salmonella expressing multiple genes A, A/G IHV, IAVI, NIAID 
Vaccinia-env and envelope proteins Multiple St Jude, NIAID 
VEE-gag (replicons) C IAVI, NIAID 
VEE expressing multiples genes (replicons) C NIAID, WRAIR 

*CCR5, CC chemokine receptor 5; MVA; modified vaccinia Ankara; European countries funded by the European Union; IAVI, International 
NYVAC, attenuated vaccinia virus; VEE, Veneuzuelan equine AIDS Vaccine Initiatives; IHV, Institute of Human Virology; NCI, 
encephalitis virus; VLP, virus-like particles. †CDC, Centers for Disease National Cancer Institute; NIAID, National Institute of Allergy and 
Control and Protection; Eurovac, consortium of 21 laboratories in 8 Infectious Diseases; WRAIR, Walter Reed Army Institute of Research. 

epitopes (e.g. recognized by multiple alleles) are also combination with gp120 subunit vaccines, have been evalu­
under development [4•]. ated in humans. Although HIV-specific CTL responses 

were detected in only about one-third to one-half of volun-
DNA candidates, thus far, have not fulfilled the expecta- teers, the concomitant induction of neutralizing antibodies 
tions arising from early studies in mice. DNA vaccines and T-helper responses in volunteers boosted with gp120 
encoding env and gag-pol genes were safe in doses of up to has made this ‘prime-boost’ a promising approach [6••,7••]. 
3 mg, but failed to induce strong immune responses A phase II study of a canarypox HIV candidate (ALVAC 
(Goepfert P et al., Int Conf AIDS 1998,12:635) [5•]. Codon- vCP1452) in combination with gp120 (AIDSVAXB/B, 
optimized, adjuvanted and particle-formulated candidates VaxGen) is underway in the USA. This study will lead to 
are expected to perform better. an efficacy trial in late 2002 if immunogenicity criteria are 

met. Another recombinant pox vector, modified vaccinia 
Live recombinant vectors expressing one or more HIV Ankara (MVA, IDT Germany, under contract to the 
genes are among the most promising candidate vaccines. University of Oxford, UK) expressing HIV gag and a 
The first HIV recombinant viral vector evaluated in number of CTL epitopes, has recently entered clinical 
humans was an attenuated vaccinia that expressed the HIV trial in the UK and Kenya. 
gp160 envelope protein. Subsequent trials evaluated a 
more complex vaccinia recombinant expressing env and Preclinical studies 
gag-pol genes (Keefer MC et al., Int Conf AIDS 1998,12:278). Preclinical studies have truly fueled the current optimism. 
Recipients developed neutralizing antibodies but CTL First, several candidate vaccines have produced promising 
induction was limited; however, sensitive assays to detect results in rather stringent non-human primate models of 
CTL responses were not available at that time. AIDS. Second, the number of candidates advancing 

toward phase I human trials has increased dramatically in 
The potential virulence of vaccinia in immune deficient the past three years (Table 2). 
individuals has directed attention to recombinant viral vec­
tors with very limited or no ability to replicate in human Advancements in the field of HIV and SIV (simian 
cells and to replicons, which lack the full complement of immunodeficiency virus) immunology have permitted 
genes required for complete replication and/or particle for- more thorough and sensitive evaluation of cellular 
mation. The most extensively studied vector in human trials responses to HIV and SIV candidate vaccines (Table 3). 
is ALVAC, a recombinant canarypox developed by Aventis Until a few years ago, cellular immune assays were limited 
Pasteur. Five canarypox-HIV recombinants, alone or in to measuring proliferation of T cells exposed to antigen 
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Table 3 

Laboratory assessments of HIV–vaccine-induced immune responses. 

Type of response Assessment Specific assays 

Humoral immune responses	 Antibody binding assays ELISA, Western blots 
Antibody neutralization assays 
Antibody-mediated fusion inhibition assay 
Antibody-dependent cytotoxicity 

Cellular immune responses	 Proliferation to soluble antigens (mostly CD4+ cells) 
Cytotoxicity Chromium-release assay 
Enumeration of antigen-specific T cells Tetramer binding 
Enumeration of cytokine-producing cells (IFN-γ, TNF-α, etc.) ELISPOT, intracellular staining 

(flow cytometry) 

ELISA, enzyme-linked immunosorbent assay; IFN-γ, interferon-γ; TNF-α, tumor necrosis factor α. 

and CTL-mediated killing of autologous cells expressing 
HIV epitopes, both of which are subject to considerable 
variability. Newer assays such as ELISPOT — an enzyme-
linked immunosorbent assay (ELISA) format — allow for 
detecting and counting cells producing interferon-γ or 
other cytokines in response to specific peptides [8••]. 
T cells that recognize specific peptides bound to major 
histocompatibility complex (MHC) class I molecules can 
also be detected and counted by flow cytometry using 
tetramers, which are molecules consisting of four copies 
of a given class I molecule bound to their cognate 
peptide and alkaline phosphatase [9]. These advances, 
combined with identification of CTL epitopes and 
their restricting MHC class I molecules in rhesus 
macaques, have made more detailed dissection of 
vaccine-induced immune responses in immunized animals 
feasible [10–12,13•,14•]. 

Several candidate vaccines have been shown to protect 
rhesus macaques from disease following challenge with a 
highly pathogenic virus weeks to months after the last 
immunization [14•,15–18,19••,20••,21]. Immunized ani­
mals became infected but controlled the infection to the 
extent that, in some cases, viral levels in the blood were 
low to undetectable, CD4+ T-cell counts remained stable, 
and the animals did not progress to disease months after 
most if not all control animals progressed to disease 
[19••,20••]. Protection correlated with strong vaccine-
induced immune responses mediated by CD8+ T cells. 
This is somewhat reminiscent of highly exposed Kenyan 
sex workers whose resistance to detectable HIV infection 
was associated with HIV-specific CD8+ T-cell responses 
[22]. Interestingly, a small number of these women who 
had left or decreased their sex work became HIV infected, 
demonstrating that their protection was not life-long and 
suggesting that continued exposure to antigenic stimulation 
may be required to afford long-term protection [23]. Thus, 
long-term follow-up of experimental animals will be 
required to determine whether these ‘protected’ macaques 
will eventually lose their controlling immune responses 
and progress to disease and to what extent boosting of the 
immune system may be necessary. 

Transmissibility of virus from these animals has also not 
yet been determined, although viral load in the plasma of 
HIV-infected persons strongly correlates with transmission 
to sexual partners and to newborns [24••,25]. Whether 
vaccine-induced long-term control of HIV replication will 
prevent HIV transmission remains to be determined. 

Most candidate vaccines that controlled infection through 
strong cellular immune responses did not induce high-titer 
neutralizing antibodies. However, cocktails of antibodies 
passively transferred have protected macaques against 
pathogenic challenge — protection correlated with in vitro 
neutralization results [26,27••]. Studies with strains of HIV 
that have been genetically modified have provided addi­
tional evidence that antibody can contribute to the control 
of viremia [28]. Thus, a candidate vaccine that induces 
broadly neutralizing antibodies as well as strong cellular 
responses could provide improved protection against 
infection or disease. 

Additional optimism has also come from the substantial 
increase in the number of vaccine candidates that are 
scheduled to enter clinical trial in the coming 1–3 years. In 
view of the high risk and relatively poor global market 
forces that dissuade aggressive private sector investment in 
product development, particularly for candidate vaccines 
based on HIV subtypes that predominate worldwide, 
government and philanthropic sources have supported the 
preclinical development of many of these (Table 2). 

Vaccine design 
As noted above, recombinant monomeric gp120 envelope 
candidate vaccines elicit antibodies that are generally sub-
type specific and neutralize TCLA isolates but few if any 
primary isolates of HIV. For this reason, there is little con­
fidence that the candidate recombinant envelope vaccines 
now in clinical trials will induce neutralizing antibodies 
with the breadth necessary for worldwide use. At a mini-
mum, cocktails of gp120s would be necessary. Antibodies 
induced in human volunteers by ALVAC and gp120 have 
been reported to neutralize five out of 14 primary isolates of 
HIV, including HIV with different co-receptor usage [29•]. 
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Unfortunately, although new viral vectors that enter human 
trial this year and next may prove to induce more consistent 
or higher levels of CTLs, candidates likely to induce broadly 
neutralizing antibodies have not yet been identified. 

Efforts to design a vaccine that induces broadly reactive 
antibodies against primary isolates were given a boost with 
the report that a fused cell preparation (comprising cells 
expressing HIV envelope and cells expressing HIV recep­
tors) induced antibodies in transgenic mice that neutralized 
23 of 24 primary isolates from different HIV subtypes [30]. 
Although this result has not been reproduced, several 
groups have constructed modified envelopes that might 
reveal conserved conformational epitopes critical to HIV 
entry with somewhat encouraging results. The V2 loop is 
one of three highly variable sequences of the HIV envelope. 
Removal of this from a DNA vaccine resulted in a candi­
date vaccine that induced antibodies that were somewhat 
more broadly reactive than the parent molecule [31]. A 
stabilized envelope trimer, designed to resemble the func­
tional envelope glycoprotein on the surface of the virion, 
induced neutralizing antibodies against select primary iso­
lates and TCLA HIV, whereas trimers derived from TCLA 
HIV induced antibody that neutralized only the homolo­
gous virus [32]. Other approaches — including stabile 
oligomerization, removal of carbohydrate molecules, 
modification of envelope to be independent of CD4, and 
gp120–CD4 fusion proteins or complexes — are also under 
investigation [28,33•,34•,35–37]. No outstanding envelope 
candidate has yet emerged. 

Other remaining challenges 
One achievement that would advance the field of HIV 
vaccine development more than any other would be iden­
tifying a candidate vaccine that shows some protection in 
human trials and determining the immune correlate(s) — 
the type, magnitude, breadth and/or location of immune 
responses — that are associated with protection. 
Sensitive and quantitative antibody assays have been in 
existence for decades. The new cellular assays described 
above are now being employed in vaccine clinical trials, 
increasing our ability to detect and quantify vaccine-
induced cellular responses. This has improved hope that 
an immune correlate can be identified in the context of 
large efficacy trials. 

Table 5 

Table 4 

Possible outcomes of immunization against HIV. 

Outcome Specific effects 

Sterilizing immunity No cells contain integrated provirus (no virus 
detected at any time in blood, lymph nodes, or at 
the site of exposure using the most sensitive 
PCR assay) 

No seroconversion to HIV proteins not in the 
vaccine 

No CTLs to HIV proteins not in the vaccine 

Transient infection Low level of virus detected only very early 
following exposure (no virus detected in blood, 
lymph nodes, or at the site of exposure using 
the most sensitive PCR assay at 6 months and 
all later times) 

No or transient seroconversion to HIV proteins 
not in the vaccine 

No or transient CTLs to HIV proteins not in the 
vaccine 

Controlled infection Virus levels fall to and remain at low to 
undetectable levels (<1000 RNA copies/ml) 
following the acute stage of infection 

Seroconversion to HIV proteins not in the vaccine 
occurs 

CTLs to HIV proteins not in the vaccine are 
present 

Lack of transmission Virus levels in blood and secretions remain 
to others insufficient to infect others 

Various potential outcomes might result from immuniz­
ation (Table 4). Because HIV integrates into the host cell’s 
DNA, once infection occurs, it may not be possible to com­
pletely eliminate the virus. Long-term control may be the 
only feasible outcome. In any case, for a vaccine to have 
substantial public health value it should prevent the 
vaccine recipient from passing the virus on to others. 
Evaluating outcomes other than sterilizing immunity, 
defined as the absence of detectable infection, will require 
long-term follow-up and will present enormous challenges. 

Another challenge is to decipher the relevance of different 
HIV subtypes to vaccine development. Several studies 
have demonstrated that antibody recognition does not 
correlate completely with genetic subtype [38,39]. Further, 
CTLs directed against one HIV subtype can kill cells 

Challenges to conducting preventive HIV vaccine efficacy trials. 

Industrialized countries Developing countries 

Relatively low incidence of HIV infection even in higher risk groups Concerns regarding exploitation and unequal partnerships 
requires large trials of thousands per arm Concerns that the country will not have affordable access to the 

At-risk populations present recruitment and retention challenges vaccine if proven efficacious 
particularly women at sexual risk, men at heterosexual risk and Infrastructure needs: clinics, labs, equipment, supplies 
intravenous drug users Training needs: science, good clinical practice, ethics, lab assays, 

Distrust of researchers and government data management 
Growing misunderstandings and distrust of vaccines in general National authorities and institutional review boards poorly supported 

or nonexistent 
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infected with HIV from other subtypes, due largely to the 
more highly conserved nature of the internal HIV proteins. 
The pattern of such cross-killing varies and is less efficient 
relative to homologous targeting against cells infected 
by HIV from the same genetic clade; however, the magni­
tude needed to provide protection remains unknown 
[24••,40,41]. In addition, individuals with different human 
leukocyte antigen (HLA) backgrounds are likely to focus 
CTL responses on different epitopes, which could theoret­
ically impact immune responses to vaccines and efficacy of 
vaccines found to be effective in other populations [42]. 
Until a correlate of immune protection is validated, clinical 
trials must be carried out in multiple countries, where 
different HIV subtypes circulate, to determine whether any 
vaccine will be broadly efficacious. Some of the problems 
associated with conducting such trials are shown in Table 5. 

Conclusions 
With the advent of improved cellular immune assays, there 
is a strong desire to move candidate vaccines that could 
prove at least partially effective into efficacy trials to 
attempt to define immune correlates. However, as the 
properties required in a successful HIV vaccine remain 
unknown, academic creativity in the design of vaccines, 
animal models and clinical trials is needed. This should 
ensure that improvements would continue if the candidate 
vaccines in trials or in the pipeline prove lacking in the 
degree, breadth or durability of efficacy. Fortunately, in 
recent years a number of promising new candidate vac­
cines that induce strong cellular immune responses have 
yielded improved results in preventing AIDS in animal 
models. Several of these candidates have recently or will 
soon enter clinical trials, fueling the current optimism that 
identifying a safe and at least partially effective HIV vaccine 
in this decade is an achievable goal. 
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